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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-I_I0

STARTING CONDITIONS FOR NONOSCILLATOHY LOW-THRUST

PLANET-ESCAPE TRAJECTORIES

By Wilbur F. Dobson, John S. Mackay, and Vear! N. Huff

SUMMARY

A method is presented for selecting initial values for orbital

parameters that permit larger intervals in the numerical integration of

low-thrust planet-escape trajectories. The results are derived for

cases where the only acceleration causing non-two-body motion is due to

a propulsion device having a constant propellant-flow rate and thrust

alined in either the circumferential or tangential direction. Also, it

is demonstrated that the results may be extended to thrust programs that

are slightly off either the tangential or circumferential direction.

INTRODUCTION

The escape paths from near circular orbits of vehicles with low

thrust-weight ratios involve many spiral-type revolutions (refs. i

and 2). Furthermore, the time histories of many of the variables in-

volved are oscillatory (ref. 3). As a result, accurate numerical inte-

gration of such trajectories will involve many steps per revolution of

the vehicle about the planet. This is particularly true for thrust-

weight ratios lower than 10 -3 . Not only are the large number of steps

objectionable from the standpoint of machine time, but they may also

lead to prohibitive accumulation of round-off error.

In this report, initial conditions that permit nonoscillatory_ and

therefore faster_ numerical solutions from initially nearly circular

orbits are derived. The special initial conditions are given in terms

of the elements and parameters of the osculating or instantaneous-

tangent orbit. However, these are easily transformed to any other con-

venient set of variables. The results are applicable to constant

propellant-flow rates with the thrust alined in either the tangential

or circumferential direction. Cases of constant tangential or circum-

ferential acceleration may also be treated with the results derived

herein. Lawden, in reference _, shows that the propellant consumption
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for escapes in which tangentially directed thrust is used is very little
more than that needed for escapes in which an optimally directed thrust
program is used. He found that the optimal initial thrust direction
lies midwaybetween the circumferential and tangential directions_ but,
as the trajectory approaches escape, the thrust direction movestoward
and finally alines with the tangential direction.

Approximate analytic expressions for computing escape spiral char-
acteristics are presented in references i, 3, 5, and 6. Of these
approximate methods, those of references ! and 6 are probably more
accurate than the others. The increased accuracy of reference i is re-
ported to result from its semiempirical nature. Although reference 6,
requires evaluation of elliptic integrals and numerical integration to
determine time, it has the advantage of being applicable to initially
elliptic orbits. In reference 6, constant tangential-thrust accelera-
tion is assumed; it is therefore not applicable to cases of constant
thrust requiring expenditure of a significant portion of the vehicle
mass. Charts of dimensionless orbital parameters obtained by numerical
integration are presented in reference 2. The use of approximate ana-
lytic integration or preeomputeddata from charts obviously saves much
computing time comparedwith any numerical integration, and it is recom-
mendedif they are sufficiently accurate for the intended application.

Others (e.g., ref. 3) have noted the value of the concept of the

mean or nonoscil!atory path in obtaining approximate analytic expres-

sions that avoid the oscillatory motion encountered in numerical inte-

gration beginning from an initially circular orbit. Hence_ it is

reasonable to suppose that proper selection of a slightly noncircular

starting orbit and a position in that orbit could cause a vehicle to

actually follow or "fly" the smooth trajectory. Integration of the re-

sulting trajectories, having monotonic derivatives for all variables of

integration, permits accurate escape and capture spiral-trajectory cal-
culations with reduced expenditures for digital computing machine time

as compared with oscillatory trajectories.
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SYMBOLS

disturbing acceleration in circumferential direction, positive when

making an angle less than _/R with velocity direction

jet velocity

eccentricity

propulsive thrust

M mean anomaly
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n mean angular motion

p semilatus rectum

r radius to object

T disturbing acceleration in tangential direction, positive when in

direction of velocity

u angular position in orbit relative to fixed reference line,

u = v + e, positive counterclockwise

V velocity of object

v true anomaly, positive counterclockwise

W object weight

angle between thrust and velocity directions, positive clockwise

gravitational constant

path angle, angle between circumferential and velocity directions,

positive clockwise

argument of pericenter

Superscript:

derivative with respect to time

ANALYSIS

The slightly elliptical orbital starting conditions for nonoscil-

latory escape trajectories will be obtained with the aid o_expressions

for the time derivatives of the osculating orbit elements. As the analysis

is concerned only with a disturbing acceleration, which is directed either

tangentially or circumferential!y, terms resulting from other components

of the disturbing acceleration will be omitted from the more general

expressions that may be found in table I'/ of reference 7. With these

omissions_ the expressions for the two cases are:

(la)
- V



zT v)=-_(e + cos (2a)

(zb)

& = 22 si_ _ (3a)
Ve

!

C + sin v 5b

n = _(i e_)3 (4)

0_= >+& (s)

where

V= _/_(l + ez + Ze cos v)
(6)

Since the purpose of this note is to find an initial set of ele-

ments and parameters for the osculating orbit that will cause their

time histories to be nonoscillatory3 it follows that their time deriv-

atives will be mouotonic.

First, note that equation (2) can lead to a monotonic value for

if the true anomaly remains relatively fixed. True anomaly can be

relatively constant only if the osculating orbit rotates along with

the body. Thus 3 the rate of rotation of perigee will be approximately

equal to the rotation of the polar angle. That the presence of a dis-

turbing acceleration (T or C) is necessary to cause rotation of the

orbit is shown in equation (3). Rotation of the orbit_ while necessary

for monotonic derivatives, is not a sufficient condition because the

orbit may swing about some equilibrium position. The objective is then

to find approximate values of the variables in equations (i) to (3)

that correspond to orbit rotation at the equilibrium position. If it

is assumed that some approximately constant value for v exists, then

from equation (6)

&_ (7)

If T (or C) and u are positive 3 the angle v must lie in

quadrant i or 2 in order to satisfy equations (3) and (7). A choice

of v far into the second quadrant will give the proper sign to 6,
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but, according to equation (2), will cause e to decrease toward zero.

This will then lead to a rapid increase in _ (see eqs. (3)), which

will reduce v toward _/2. Once v is less than _/2, equations (2)

show that e will begin to increase so as to reduce _ and advance

v toward _/2o Thus 3 it appears that v = _/2 is near a stable value 3

and it will therefore be selected as an approximate starting value sub-

ject to later refinement. Moreover, equations (3) show that _ depends

upon the value of e_ that is_ e may be chosen such that _ = _. It

should be noted that the value of e will be near zero for low thrust-

weight ratios. The following analysis is carried out for T only 3

but a similar analysis yielded the results that are included for C.

Initial Value of Eccentricity

When it is assumed that v _ _/2, it follows from equation (3a)
that

= z2 (s)
Ve

When the approximations e 4< i and cos v 44 1 are introduced into

equations (4) and (5),

Since n = _, and if the aforementioned expressions are used to elimi-

nate _ and V from equation (8),

2_ 2
e = (9)

It may be noted that the initial value of e is twice the ratio of the

vehicle acceleration due to disturbing forces to that due to the inverse-

square gravitational field 3 that is_ twice the ratio of thrust to local

weight. Thus_ the required value of e is quite small for thrust-

weight ratios characteristic of electric propulsion systems in low Earth
orbits.
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Initial Position in Orbit

It has been stated that the desired position in the orbit is

v = _/2. However, the position must be determined more precisely.

following approximate value of e is obtained from equation (9):

The

____mp_ +2_p___2 (I0)

In the case of finite Jet velocity, T will not be zero because

of the changing vehicle mass, that is,

_c
T _ --- (11)

W

where W is vehicle weight, -W the propellant-weight-flow rate and

c the jet velocity. As the time derivative of vehicle weight is W,

the derivative of equation (ii) is

If W/W is eliminated from equation (12) by use of equation (ii),

_ T--2 (i_)
c

When equations (la), (9), and (13) are used, p, p, and T can be

eliminated from equation (i0). Then

The term _ from equation (14) can be eliminated by use of equa-

tion (2a), and the following position in the orbit for tangential dis-

turbing acceleration is obtained

COS V "" -_ 4-

If the initial value of mean anomaly is more convenient_ it may be

determined from equation (16), which is Kepler's equation:

v)M = tan -I - e2 sin - e
+ cos v i + e cos v

(16)

!
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If second-order infinitesimals are ignored when e and cos v are

both small, equation (16) reduces to

M _- tan-!<e i+ cos v) - e (17)

When the first-order terms for the series of tan-l[i/(e + cos v)] are

introduced, equation (17) becomes

M = _ - 2e - cos v 0 < M < _ (18)
2 - -2

Finally, equation (15) may be used to eliminate cos v for the case

of tangential disturbing acceleration. Then

(19)

For the computation of counterclockwise escape spirals, equation (19)

applies_ and M and v are in the first quadrant.

RESULTS

For a given value of the semilatus rectum P3 the desired starting

conditions required to obtain escape spirals with nonoscillatory his-

tories for the case of tangential disturbing acceleration due to a con-

stant thrust may be restated as

e ; (9)

COS V --_ _ +

M- _ e(6 _-)g - g + (19)

For the case of circumferential disturbing acceleration, the significant

results are

e ""2cp---_2 (20)
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COS V _

e(7 V) (22)M-_2 -2 +

For escape spirals having counterclockwise rotation, the angles v and

M lie in quadrant i. If acceleration is constant instead of thrust,

the term V/c is to be omitted from equations (!5), (19), (21), and (22).

The nonoscillatory starting conditions given herein may also be

used for computing capture spirals. In this case, the equations are

applicable to the near-circular orbits that occur near the physical end

of the capture spiral. Such computations are conveniently carried out

backward by using the end conditions of the spiral as starting condi-

tions and proceeding with negative time intervals and increasing mass

to the escape condition. For capture spirals_ T and C must oppose

the velocity, and the stable positions for v and M are found in the

fourth quadrant. For a given magnitude of T or C, the preceding

expressions for escape are valid for capture except that M for capture

is equal to -M for escape.

If the variables of integration are other than the given orbital

parameters, the initial values may be computed from the initial values

of e and v or M. For example, in the case of polar coordinates

9 is not zero and is given by

= _ e sin v (23)

b]
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NUMERICAL EFFECTIVENESS OF METHOD

The following illustrative examples were integrated numerically

by the Runge-Kutta method with automatic-interval-size control. The

independent variable is time, and the dependent variables of integra-

tion are p, e, M_ _ and W. The thrust is directed tangentially3 and

its magnitude is such that F/W 0 = i0 -_, where F is the propulsive

thrust_ and W 0 the vehicle weight at the Earth's surface. Thus_ the

initial value of vehicle acceleration due to propulsive force is

9.80665xI0 -& meter per second per second. The exhaust velocity c is

78,453.2 meters per second, corresponding to a specific impulse of 8000

seconds. The selected conditions and equation (ii) determine the

propellant-flow rate. The starting orbit is assumed to be in an inverse-

square gravitational field with _ = 3.983667X!014 meters cubed per



second per second, and with a radius of 6.6562575XI06meters.
data approximate a 150-nautical-mile-altitude Earth orbit.

These

<O

_O

!

Example I - Integration Speed and Accuracy for

Nearly Circular Orbit Starting Conditions

With Tangential Thrust

Case I. - Start from circular orbit. - The initial values of e,

M_ and _ are assumed to be zero. The solid lines in figure 1 show

variations of M and e, respectively, with time. It is evident that

a very small interval in numerical integration was required to turn the

lower corners of the eccentricity plot accurately.

Case I!. - Special (noncircular orbit) starting conditions. - Equa-

tion (9) gives e = 2.1813626XI0 -4 and equation (19) gives

M = 1.5701328 radians (v = 1.570569 radians). All the other starting

conditions are unchanged from those of case I. The results of the

computations for case II are indicated by the dashed lines in figure i.

It may be noted that the initial orbit is not precisely circular, and

therefore the results are not precisely comparable with those for

case I. However, a comparison of the end condition given in table

for these two cases shows that the differences in the initial conditions

have little effect on the final result. The computing time_ however,

is reduced by a factor of about 20. Since lower thrust-weight ratio

will give even smaller initial values of e, it follows that agreement

in these cases would be even better (if possible) than that shown in

table I.

The cases could be made directly comparable (in terms of propulsion

time) if a flight was begun with case I conditions and powered until

e attained the value desired for starting case If. The vehicle then

coasts in the slightly elliptic orbit until M attains the starting

value for case il, at which time power is resumed.

Example II - Comparison of Tangential- and

Approximate-Optimal-Thrust Programs

In order to illustrate the application of the starting procedure

to cases slightly off the tangential- or circumferential-thrust direc-

tion, let a numerical experiment be conducted to compare an approximate-

optimal-thrust program with a tangential-thrust program. According to

reference 4, the optimal-thrust direction initially bisects the angle
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between the tangential and circumferential directions_ and at escape
becomesparallel to the tangential direction. To approximate these
conditions the empirical relation

is selected, where _ is the angle between the thrust and velocity
directions and _ is the local path angle, both taken positive clock-
wise. The starting value of e = 2.!81Z626xIO-4 for both the tangential
and the approximate-optimal thrust agrees with example I. The starting
value of M = 1.57014194 radians is obtained with equation (19) when
the V/c term is dropped.

Slightly shorter computing times for the approximate-optimal-
thrust case were obtained by use of the value of M averaged from
equations (19) and (Z2). The tolerance permissible in the value of

initial conditions to secure the saving in computing time varies with

the problem and the accuracy desired in the final result. Experience

so far indicates a tolerance on M of -40.001 radian as a realistic

maximum. The results appear in figure 2 and table I_ and show that

the approximate-optimal-thrust program requires slightly less propulsion

time to escape with no significant increase in computing time.

b_
!

Ob

CONCLUSIONS

It has been shown that use of the equations derived herein for the

initial values of parameters in near circular orbits in an inverse-

square gravitational field disturbed by tangential or near-tangential

thrust gives faster numerical solutions than clrcular-orbit starting

conditions. Although no example is shown, it has been verified that

circumferential thrust can be treated similarly. The numerical example

that compares results for circular-orbit starting conditions with those

obtained by the method proposed shows good agreement. The slight dis-

crepancy is not meaningful in any practical application because of the

approximate nature of the inverse-square assumption and the improba-

bility of ever achieving a truly circular starting orbit even if de-

sired. Comparison of the approximate-optimal-thrust program with the

tangential-thrust program shows that small departures can be made from

tangential thrust without losing the stability of the solution.

LewisR6s6archCenter
National Aeronautics and Space Administration

Cleveland, Ohio, May 29, 1982
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TABLEY. - YNTEGRATYONSPEEDANDACCURACYFOR

NEARLYCIRCULARORBYTSTARTYNGCONDYTIONS

Case I Case IY

Starting condition

Eccentricity, e 0 2.!8!3626XI0 -4

Mean anomaly, 0 1.5701328

M, radians

Condition at time = 79,605 see

Radius, r, m 6. 792735><106 6.792722><106

Velocity, V,

m/sec

Revolutions

7.658063X105

14.50359

7.658075XI05

14.50575

Intervals per revolution required with error
control

Average

Maximum

Minimum

56.2 2.69

a163500 5.5

9.6 1.5

aMaximum occurs at lower extremals in each cycle

in fig. l(b) and corresponds to the smallest

interval size encountered during a revolution.
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TABLE If. - COMPARISON OF TANGENTTAL- AND APPROXrMATE-

OPTTMAL-THRUST PROGRAMS

[From 150-nautical-mile-altitude Earth orbit to near

escape energy; constant-thrust acceleration magni-

tude, lO -4 Earth standard gravities.]

Condition at time = 7.2XI0 6

sec (near escape energy)

Radius, r, m

Velocity_ V, m/sec

Semilatus rectum_ p_ m

Eccentricity, e

Energy (escape = 0),

m2/sec 2

Integration intervals

Tangential

(a)

5. 558187><I08

I,!85711XI0 Z

6.52%56><i08

0.9287123

-45505.02

1104

Approximate

optimal

(b)

5. 24955X108

1. 200772X105

6. 47585X108

O. 9565055

-57955.45

i160

aAngle between thrust and velocity directions_ _ = O.

bangle between thrust and velocity directions,

= - _(i - e)/2, where _ is path angle.
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Case If, e and v from

eqs. (9) and (15)
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Figure I. - Variations in orbital parameters during two

revolutions.
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